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Estimating Noise Characteristics from Flight Test Data Using
Optimal Fourier Smoothing

Eugene A. Morelli*
Lockheed Engineering and Sciences Company, Inc., Hampton, Virginia 23681-0001

A technique based on Fourier series analysis was developed to separate signal from noise for flight test data.
This was done with an optimal filter designed in the frequency domain. The method is general, and separates
signal and noise based on the spectral content of the measurement time history. Smoothed time histories with
no time lag were computed, and noise characteristics were accurately estimated. The technique can be used
independently of other procedures, and does not require assumptions about the independence of the noise
processes or the frequency content of the measurements. Simulated data was used to demonstrate the technique
and to evaluate the accuracy of estimated noise characteristics. For 20 simulation cases, noise standard errors
were estimated within 5% of the true values. Flight test data from a lateral maneuver of the F-18 High Alpha
Research Vehicle was then analyzed. The theoretical analysis was shown to be sound for both simulated data
and flight test data.

Nomenclature
A(i) - /th approximate area
av = lateral acceleration, g
bk = kth Fourier sine series coefficient
C;f = noise model parameter
Cv = signal model parameter
/ = frequency, Hz
fk — frequency of the /cth Fourier sine series term, Hz
//v = Nyquist frequency, Hz
g(i) = /th output with endpoint discontinuities removed
g(/) = Fourier sine series approximation for g(i)
gx(i) = smoothed g(i)
g = vector of g(i) values
k = Fourier sine series frequency index
kx - frequency index for the | bk peak satisfying the

signal tail criterion
/V = total number of sample times
N(f) = Fourier transform of the noise
n = noise mean value estimate
/?.lvp = number of | bk \ peaks used to compute the noise

model
/?(/) = noise for time (/ - l)Af
np = number of \bk\ peaks
nz = number of measured outputs
p = body axis roll rate, rad/s
R - discrete noise covariance matrix
r = body axis yaw rate, rad/s
$7, = noise variance estimate
7 = data record length, s
Tk = period of the /cth Fourier sine function
Y(f) = Fourier transform of the signal
Y ~ N x nz matrix of smoothed output vectors
y(i) = smoothed output for time (/ - l)Af
Z(f) = Fourier transform of the measured time history
Z = Nx nz matrix of measured output vectors
z(i) - measured output for time (/ - l)Af
/3 = sideslip angle, rad
j8v = smoothed sideslip angle, rad
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Ar = sampling interval, s
4>(/c) = optimal filter for the /cth Fourier sine series term
<j> — roll angle, rad

Superscripts
T = transpose
A = estimate

Introduction

M ATHEMATICAL modeling of aircraft dynamics based
on flight test data involves experiment design, data

compatibility analysis, model structure determination, param-
eter estimation, and model validation. In each of these tasks,
it is useful to have some estimate of the measurement noise
level, usually in the form of a noise covariance matrix.

Methods used to obtain this information include heuristic
estimation based on instrument calibration or measured time
history plots and estimating measurement noise covariance
matrix elements as additional parameters along with aero-
dynamic and/or systematic instrumentation error parameters.
The latter technique is used in conjunction with maximum
likelihood estimation,1 extended Kalman filter methods,2 and
filter-smoother algorithms.3 Typically, the noise covariance
matrix is assumed to be diagonal, with each noise variance
on the diagonal considered an unknown parameter to be es-
timated. A consequence of this approach is that the overall
order of the estimation problem is increased. A higher number
of unknown parameters generally increases the computational
burden, and can also adversely impact convergence because
of identifiability problems.

Noise characteristics can also be estimated by smoothing
measured time histories. Various schemes for local smoothing
exist,4 where the smoothed value at each data point is com-
puted by fitting an assumed model to the point and its im-
mediate neighbors, using least squares. The least squares op-
eration filters the noise. This approach generally works well
only for data with very low noise levels.

Application of digital filtering to measured time histories
introduces time lag, so that all time histories of interest must
be filtered identically to avoid time shifting the data improp-
erly. The time lag problem can also be solved by filtering
twice, forward and backward in time, for a net time lag of
zero.5 The cutoff frequency for digital filtering usually must
be estimated from considerations such as the expected har-
monic content of the signal based on experience. However,
the cutoff frequency determined in this way will not be an
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accurate frequency domain boundary between signal and noise
for every measured time history. For example, the useful
information in a typical airspeed measurement is confined to
a smaller and lower frequency range compared to a typical
pitch rate measurement, because of the inherent dynamics of
aircraft. In addition, digital filters can introduce amplitude
distortion in the passband.

The present work describes an alternative method for es-
timating the noise characteristics of measured time histories.
The method uses Fourier series analysis and an optimal filter
in the frequency domain to separate signal and noise. This
result is then exploited in a simple scheme for estimating
measurement noise covariance matrix elements.

The distinction between signal and noise has various inter-
pretations. For example, output error techniques lump the
modeling error together with the incoherent part of a mea-
sured time history and call this the measurement noise.6 This
viewpoint results in the measurement noise being colored and
model-dependent. For the present work, measurement noise
will be defined as the relatively broadband incoherent part of
a measured time history. The term incoherent is meant to
imply amplitude discontinuity and a lack of consistent phase-
amplitude relationships, causing the autocorrelation function
to be close to the impulse function. Heuristically, this part of
the measured time history would be commonly recognized as
having no deterministic component.

Measurement noise covariance estimates from the method
proposed here would be useful when computing the infor-
mation matrix for design and evaluation of parameter esti-
mation experiments. In these situations, any noise covariance
estimate that included some modeling error would be inap-
propriate. Data compatibility analysis typically involves dif-
ficulties related to parameter identifiability, so that an inde-
pendent estimate of the noise covariance could help convergence
and improve estimation accuracy. For modeling problems,
accurate estimates of the measurement noise covariance as
defined here would highlight model structure deficiencies by
excluding modeling error from the noise estimates. For equa-
tion error methods, removing incoherent measurement noise
in the regressors would more closely approximate noise-free
regressors, which is assumed in the analysis.7 In Kalman filter
applications, the number of filter tuning parameters can be
reduced when a good estimate of the measurement noise co-
variance matrix is available. Finally, the data smoothing pro-
cess, which is a by-product of separating signal and noise, can
be useful when analyzing very noisy measurements such as
linear and angular accelerations.

The next section contains the theoretical development. Fol-
lowing this, an example using data from a nonlinear simulation
is used to demonstrate the effectiveness of the method. Fi-
nally, the technique is applied to flight test data from the
F-18 High Alpha Research Vehicle (HARV).

Theoretical Development
Problem Statement

Consider a time history z(f), such as that shown in Fig. la.
Assume a constant sampling rate, with a sample taken every
A/. The sampled version of z(f) is then defined by

z(/) = z((i - l)Af] i = 1, 2,

The total time T is given by

T = (N - l)Ar

N (1)

(2)

since z(l) corresponds to time zero. The goal is to separate
signal and noise, or equivalently to find y ( i ) and n(i) such
that

Assuming that the separation of noise and signal can be
brought about, it is then useful to have some description of
the noise characteristics. In many practical cases, the noise
process can be assumed stationary and Gaussian, so that the
noise characteristics can be described by the expected value
and a constant variance. These quantities can be estimated
from a finite data record using the relations

1

(N - 1) ,t" [n(i) - nf

(4)

(5)

The strategy for determining the noise sequence n(i) will
be to find an accurate description in the frequency domain
for the signal, then invert the Fourier transform to get y ( i ) ,
and use Eq. (3) in the form

= z(/) - y ( i ) i = 1, 2, N (6)
Solution Methodology

Fourier series expansion implicitly assumes that the time
history under consideration is periodic. For the time history
in Fig. la, as is generally true, making such an assumption
implies discontinuities in the amplitude and first time deriv-
ative at the endpoints. Lanczos4 shows that Fourier series for
functions with these discontinuities have much slower con-
vergence than the Fourier series for functions without dis-
continuities in the amplitude and the first derivative any-
where. In the former case, the magnitudes of the Fourier
coefficients decrease asymptotically as k~l, where k is the
number of terms in the Fourier series expansion, whereas in
the latter case the asymptotic decrease goes as k~* (see Lanczos4

for details). This seems reasonable since the sinusoids in the
Fourier series have no discontinuities in amplitude or first
derivative anywhere, and therefore, would be expected to
have difficulty representing a time history with those char-
acteristics. It is possible to remove the endpoint discontinu-
ities for an arbitrary time history and thus achieve the more
abrupt decrease in the magnitude of the Fourier coefficients,
which corresponds to a faster convergence of the Fourier
series expansion to the function. The importance of the higher
rate of convergence will become clear in the subsequent dis-
cussion.

To remove the discontinuities, subtract a linear trend from
the original time history in order to make the amplitudes at
the endpoints equal to zero, then reflect the result about the
origin. Define this new discrete time history as g(/), with
g( — N) = g ( l ) = g(N) = 0. The values of g(i) are computed
from

g(0 = z(0 -
\z(N) - z(l)1L t f - i j

~i) = -g(0

(7)

(8)

Figure Ib shows the result of performing these operations
on the time history of Fig. la. The vector

g = W-N), g(-N + 1), . . . ,
), g(2), . . . , (9)

is an odd function of time, and thus may be expanded using
a Fourier sine series

z(i) = y ( i ) + n(i) i = 1, 2, . . . , N (3) g(0 = sin (10)
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Fig. 1 a) Simulated roll rate, signal/noise « 10.0; b) odd function with endpoint discontinuities removed corresponding to Fig. la; c) absolute
Fourier sine series coefficients for simulated roll rate; d) expanded view of Fig. Ic, including signal and noise models; e) optimal filter for the
simulated roll rate Fourier sine series coefficients; f) true and smoothed roll rate; and g) residuals computed using smoothed roll rate.

In Eq. (10), g(i) denotes the approximation to g(/) using
the Fourier sine series. The summation over frequency index
k omits k = 0 (zero frequency), since this is a pure sine series.
Only positive values of / are included in Eq. (10), because
these values correspond to the original function. The abrupt
k ? decrease in the magnitudes of the Fourier sine series
coefficients bk can now be expected because the discontinu-
ities in the amplitude and first time derivative at the endpoints
have been removed. The Fourier sine series coefficients for
g are given by4

Af — 1 ft

£ - 1, 2, . . . , N - 1

N -

(11)

where the index / runs from 2 to N - 1, because g(l) and
g(N) are zero. The upper limit for k is (N - 1), which cor-

responds to the Nyquist frequency.8 From Eq. (10), the period
of the kth Fourier sine series term Tk is given by

Tk =
2(N - l)Ar (12)

and, therefore, the /cth frequency fk is related to the index k
by

A = 2(N - (13)

In order to effectively smooth the data, it is necessary that
the Nyquist frequency (equal to one-half the sampling rate
for the data) be much higher than the highest frequency in
the signal. This consideration is rarely a problem with modern
data acquisition technology when proper attention is paid
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to analog antialiasing filtering before sampling.8 Airplane
dynamics applications typically employ a sampling rate of at
least 50 Hz, and the frequencies of interest rarely exceed 5 Hz.

Using Eqs. (7) and (8) to construct g guarantees that the
endpoint discontinuities that result from assuming g to be
periodic are in the second time derivative of the original time
history. Convergence of the Fourier sine series approximation
would be further improved if endpoint discontinuities in higher
derivatives were also removed. However, since the measured
time histories are from a dynamical system where application
of forces can produce discontinuities in second-order (and
higher) time derivatives, any attempt to remove additional
endpoint discontinuities runs the risk of inadvertently modi-
fying the signal. Therefore, removing amplitude and first time
derivative endpoint discontinuities is accepted as the best that
can be done without corrupting the desired signal in the course
of removing endpoint discontinuities.

The Fourier sine series expansion in Eq. (10) contains all
spectral components that can be computed from the given
finite time history, including both signal and noise. The Fou-
rier series for a coherent signal is fundamentally different than
the Fourier series for noise. As mentioned above, a coherent
signal with discontinuities in the second time derivative at the
endpoints has Fourier series coefficient amplitudes that de-
crease asymptotically to zero with increasing /c, i.e., \bk\ is
proportional to k~3. On the other hand, since noise is inco-
herent and theoretically has constant power over the fre-
quency range up to the Nyquist frequency, its Fourier series
coefficients do not decrease asymptotically to zero, but in-
stead have a relatively small and constant magnitude over all
frequencies. This reflects the fact that the Fourier series ex-
pansion for an incoherent time history is divergent, due mainly
to the inconsistent phase-amplitude relationships. In the case
of a Fourier sine series, the Fourier series coefficients of the
noise appear as a relatively constant amplitude oscillation
about zero, representing random phase change in the spectral
components. The abrupt k~3 decrease in the magnitudes of
the Fourier sine coefficients for the signal contrasts sharply
with the relatively constant magnitude of the Fourier sine
series coefficients for the noise. The use of Eqs. (7) and (8)
to remove endpoint discontinuities prior to performing the
Fourier transform was done specifically to enhance this con-
trast.

The ideas presented to this point in the Solution Method-
ology section were based on material in Lanczos,4 to which
the reader is referred for more information. The remainder
of this section describes the method developed to accurately
separate signal and noise and the use of this result in esti-
mating noise characteristics.

First, the optimal filter must be defined. Consider the Fou-
rier transform of the measured time history, which is com-
prised of signal plus noise

Z(f) = Y(f) + N(f) (14)

The goal is to design a frequency domain filter which is op-
timal in the sense of minimizing the squared difference be-
tween the true signal Y(f) and the estimated signal Y(f) over
the entire frequency range, i.e., the integral

{Y(f) - Y(fW df (15)

is to be minimized. The estimated signal in the frequency
domain will be obtained by multiplying a filter <£(/) with Z(f)

Y(f) = N(f)] (16)

Substituting for Y(f) from Eq. (16) and recognizing that
' ( f \ \ i ( f \ integrated over all frequencies will be approxi-

mately zero due to the incoherence of the noise, Eq. (15)
becomes

(17)

Taking the derivative of the integrand in Eq. (17) with respect
to 4>(/), setting the result equal to zero and solving for
gives

Y2(f)
Y2(f) + N2(f) "- ' -

or, in terms of the discrete frequency index k

Y-(k)
Y\k) + N2(k) 0 < k<N - 1

(18)

(19)

Equation (18) gives the form of the optimal filter in the
frequency domain, also called the Wiener filter.8 For the prob-
lem at hand, an optimal filter can be designed in the frequency
domain by taking advantage of the known analytical model
forms for the Fourier sine series coefficients of signal and
noise, discussed previously. Once analytical models for Y(k)
and N(k) are identified, Eq. (19) can be used to construct the
optimal filter O(/c). This optimal filter then multiplies the bk
from Eq. (11). The smoothed signal (with endpoint discon-
tinuities still removed) was computed from

y v - i r i / • __
y\ ^(k^bf, sin —-——

/ t = i L N ~
i = 1, 2, . . . , N

(20)

From theoretical considerations discussed previously, \Y(k)\
will be proportional to k~:\ while | N ( k ) \ will be approximately
a constant. Therefore, 4>(/c) from Eq. (19) will be near unity
at low frequencies, passing the Fourier sine series components
for the signal completely, then transition smoothly to near
zero at high frequencies, removing Fourier sine series com-
ponents associated with the noise. The summation in Eq. (20)
need not be carried out over all (N - 1) terms, because
| <J>(/c)/?A | becomes small as k increases. For the work described
here, the summation was stopped when \<$>(k)bk\ < 1.0 x
10 4.

The model for the magnitude variation of the Fourier sine
series coefficients for the signal was Cv /c~3 , with C, a constant
parameter to be determined. The model for the magnitude
of the Fourier sine series coefficients for the noise was a
constant C,,, with value to be determined. Figure Ic is a plot
of the absolute values of the Fourier sine series coefficients
from Eq. (11) for the time history of Fig. Ib, as a function
of the frequency index k. The sample time Af was 0.02 s, so
that N = 751 for the 15-s time history shown in Fig. la. The
sharp drop in the \bk\ amplitudes for the signal can be con-
trasted with the relatively constant amplitude \bk\ at high
frequencies representing the divergence of the Fourier series
for the noise. The goal is to compute simple analytical models
for these two regions, in order to compute the optimal filter
in the frequency domain from Eq. (19).

Figure Id is an enlarged view of the \bk\ amplitudes in the
range of frequencies corresponding to 20 < k < 100. It is
apparent from this plot that the \bk\ amplitudes are not mon-
otonic with /c, but are jagged with the peak values generally
following the k~* model. This reflects the fact that the time
history contains discrete frequencies to varying degrees, caus-
ing the spectrum to be discontinuous. Therefore, the peak
values were picked out numerically and ordered from greatest
to smallest \bk\ amplitude as k increases, so that the result
was a set of \bk\ peak amplitudes that were monotonically
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decreasing with increasing k. This is roughly equivalent to
approximating the spectrum using only the peak values of
\bk\. Assume that np peak values occur at frequency indices
&,, &2, . . . , knp, with amplitudes \ b k } \ , \bk], . . . , |6*J, so
that

*,<*,< and > • >

(21)

Selected pairs of kl and |&A..|, / E {1, 2, . . . , np}, can be
used to generate a least squares fit to the Csk~* model. In
theory, the CSA;~3 model holds asymptotically as k becomes
large. In addition, the model should be as accurate as possible
near the frequency index where | Y(k) \ and | N(k) \ are roughly
equal. For these reasons, peak values in the vicinity of the
tail of the Cxk~* model were used in the least squares fit to
the signal model.

The change in area under the Cxk~* curve decreases as k
increases. This fact was used to locate the tail of the cubic
curve. Using the values from expression (21), the approximate
area under the curve defined by the peak values is given by

/ = 2, 3, np (22)

where a simple trapezoidal Riemann sum was used to ap-
proximate the area. It was assumed that the tail of the cubic
curve was reached when the change in A(i) was 10% or less
for two consecutive / values. The peak index where this oc-
curred, denoted by ks, was the smallest peak index that sat-
isfied

A(s) - A(s - 1)
A(s) <0.1 for s and (s - 1) (23)

Estimation of Cv for the Cxk ~ 3 model was based on four
peak index values: & v _ 2 , kx_ ,, /cv, and kx+ ,. The least squares
problem for estimating Cv was set up as follows:

(24)( '

The least squares solution for Cv was

Cx = XTW/XTX (26)

The expanded view in Fig. Id shows the identified Cxk~*
model on the same plot with the | bk \ amplitudes. The constant
model for the Fourier sine series coefficient magnitudes as-
sociated with the noise is also shown. A description of the
computations required for the noise model is given next.

An estimate of Cn can be obtained by again considering
only peak values of the \bk\, where peak values were used to
approximate the discontinuous noise spectrum, as before when
considering \bk\ for the signal. The constant value of the \bk\
for the noise was computed as a rms average value using «avg
peak values immediately following the last peak value used
in the cubic function fit, so that

(27)

where a reasonable value for wavg was found to be

wavg - M10

with Havg rounded off to the nearest integer and assuming a
fairly large W, i.e., N > 200.

The constant C,, from Eq. (27) was the model for the \bk\
associated with the noise, as shown in Fig. Id. Then, for
computing the optimal filter

Y(k) = Csk~

N(k) = Cn

(29)

(30)

The design parameters used in Eqs. (23) and (27) were
reasonable values chosen by trial and error to give the most
accurate and robust analytical models for Y(k) and N(k). In
practice, there is some room for error in this modeling because
the \bk\ values are small in this region anyway, and therefore,
excluding or including a few components improperly in Eq.
(20) will have minimal adverse effect on the final smoothed
time history and the noise covariance estimate. Additional
margin for error in the analytical modeling of Eqs. (29) and
(30) is provided by the fact that the frequency domain filter
computed from Eq. (19) is the optimal filter if the models in
Eqs. (29) and (30) are exact.

Naturally, some components of the noise lie in the low
frequency range, but there is no way to distinguish this noise
from the signal, which also resides in the low-frequency range.
Typically, the large majority of the noise power resides at
high frequency relative to the frequencies of the signal, and
this noise can be removed very effectively. When the signal-
to-noise ratio is high, the power of the noise relative to that
of the signal is small in an overall sense, but this situation is
improved by the fact that the noise power is spread over a
wide frequency range, whereas the signal power is limited to
low frequencies. Once the high frequency noise has been
removed, the remaining noise components in the frequency
range of the signal have very low power, and therefore, have
little impact on the smoothing operation and the noise Co-
variance estimation.

As a final step, the linear trend removed from the original
time history using Eq. (7) must be restored to the smoothed
values g_v(0 fr°m Eq. (20). The smoothed values y(i) result
from

y(i) = g/i) + 2(1) + (i - 1)

/ = 1, 2, . . . , N

- z(l)1
- 1 J

(31)

It is clear from Eqs. (7) and (31) that the endpoints of the
original time history, z(l) and z ( N ) , are completely excluded
from all smoothing operations. For very noisy data, this can
produce significant error in the smoothed time history. To
correct for this, the endpoints only were smoothed by a low
pass filter implemented as a time convolution with a fixed
weighting function9 prior to applying the Fourier smoothing
technique described previously. The cutoff frequency for this
filter was fixed at 5 Hz, which is relatively high for flight test
data intended for studying airplane dynamics.

The noise sequence «(/), / = 1, 2, . . . , N, was obtained
from Eq. (6) using the y(i) computed from Eq. (31). Equa-
tions (4) and (5) were then used to estimate the noise char-
acteristics. For an experiment with nz measured outputs, the
measured time histories can be arranged in an N x nz matrix

(32)

where z/, / = 1, 2, . . . , nz, are N
time histories. Similarly, define

x 1 vectors of measured

(28) (33)
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where j,, / = 1,2,. . . , nz, are N x 1 vectors of the respective
smoothed signal time histories.^ An estimate of the measure-
ment noise covariance matrix R was obtained from

R = (z - Y)T(z - y)
N - i

Results

(34)

Figure la depicts aircraft roll rate in rad/s from a nonlinear
simulation. The added measurement noise was zero mean
white Gaussian, with standard error set to one-tenth the rms
of the uncorrupted signal, making the signal-to-noise ratio
approximately 10 to 1. The standard error of the added noise
was known and equal to 0.0112 rad/s. Figure Id shows an
expanded view of the signal and noise models, Y(k) and N(k),
respectively, on the same plot with the \bk\ from the mea-
surement time history. The optimal filter computed from Eq.
(19) appears in Fig. le. An effective cutoff frequency can be
computed as the frequency where Y(k) = N(k) or <£(&) =
0.5. For Fig. le, the cutoff frequency index was 54, corre-
sponding to 1.8 Hz from Eq. (13) (N = 751, Ar - 0.02 s).
In Fig. If, the smoothed signal and the true signal are seen
to be virtually identical. Figure Ig shows that the residuals
are very close to zero mean with no deterministic component.

To assess the accuracy of the noise estimates using Eqs.
(4-6) and (31), 20 runs were made by corrupting the same
true signal used for Fig. la with noise from 20 different re-
alizations of a zero mean, white Gaussian noise process. Noise
amplitude was selected to reduce the signal-to-noise ratio to

approximately 5 to 1. The results are given in Table 1. The
standard error of the noise was estimated within 5% of the
true value for every case.

Next, data from a flight test maneuver of the F-18 HARV
was analyzed. The sideslip angle measurement from a sensor
located on the right wingtip boom is plotted in Fig. 2a. The
30-s time history was sampled at 50 Hz (N = 1501, Ar =
0.02). Figure 2b shows the Fourier sine series magnitudes with
the cubic decrease in the \bk at low frequency, but also in-
cluding components of an apparent structural mode near 9
Hz. Figure 2b indicates that virtually all the deterministic
signal power for rigid body motion lies below approximately
1 Hz. Note also in Fig. 2b that the \bk\ for the deterministic
signal associated with the structural mode also exhibits the
asymptotic cubic decrement in magnitude with increasing fre-
quency. Figure 2c is an expanded plot of the \bk with cor-
responding signal and noise models. The \bk\ variation for the
signal and noise are represented well by the analytical models,
demonstrating that the technique readily adapted to the mea-
sured time history spectrum. The optimal filter is shown in
Fig. 2d as a function of frequency. Cutoff frequency was k = 45
or 0.75 Hz. Smoothed sideslip angle )3y is plotted in Fig. 2e.
The residuals in Fig. 2f show approximately zero mean and
some deterministic components resulting from the structural
vibration.

Noise covariance matrix elements were estimated using Eq.
(34) for five measured outputs from the same flight test ma-
neuver. The results are given in Table 2. Graphical results
for these measurements were similar to those shown in Fig. 2.
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Fig. 2 a) Measured sideslip angle; b) absolute Fourier sine series coefficients for measured sideslip angle; c) expanded view of Fig. 2b, including
signal and noise models; d) optimal filter for the measured sideslip angle Fourier sine series coefficients; e) smoothed sideslip angle; and f) residuals
computed using smoothed sideslip angle.
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Table 1 Noise standard error estimates from
simulation data

Run
number

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Noise standard
error estimate,

s,,
0.0273
0.0274
0.0290
0.0290
0.0263
0.0262
0.0269
0.0274
0.0282
0.0285
0.0283
0.0278
0.0280
0.0265
0.0266
0.0276
0.0275
0.0276
0.0269
0.0279

True noise
standard

error
0.0282
0.0281
0.0296
0.0299
0.0273
0.0272
0.0280
0.0285
0.0291
0.0295
0.0281
0.0291
0.0287
0.0278
0.0272
0.0286
0.0286
0.0286
0.0279
0.0287

% error
-3.3
-2.4
-2.2
-3.0
-3.8
-3.4
-3.9
-4.1
-3.1
-3.5

0.9
-4.5
-2.1
-4.8
-2.1
-3.7
-3.9
-3.3
-3.7
-2.9

Table 2 Measurement noise covariance matrix estimated from
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Concluding Remarks
Fourier series analysis was used to design an optimal filter

in the frequency domain for accurately separating signal and
noise. The optimal filter was designed using simple analytical
models identified from both theoretical analysis and the spec-
trum of the measured time history. The method produced
smoothed time histories with zero lag relative to the measured
time histories, and gave an independent and accurate estimate
of the noise characteristics. No assumptions about the inde-
pendence of the noise sequences were required. Using sim-

ulated data, it was shown that noise characteristics could be
very accurately estimated.

Analytical model fits in the frequency domain and time
domain residuals for measured sideslip angle from the F-18
HARV indicated an accurate and effective separation of sig-
nal and noise for flight test data. A method for estimating
the noise covariance matrix for multiple measured outputs
was demonstrated using F-18 HARV flight test data. Such
information can be used to replicate flight test measurement
noise in simulations.

The smoothed time histories and estimates of the noise
characteristics resulting from the technique described in this
work can be useful in designing and evaluating experiments,
and in various techniques for data compatibility analysis, model
structure determination, parameter estimation, and model
validation.
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